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Sovarnl now discrete sarface infegral methods for solving Max-
wall’s equations in the time-domain are presented, These methods,
which allow the use of general non-orthogonal mixed-polyhedral
unstructured grids, are direct generalizations of the canonical stag-
gered-grid finite difference method. These methods are conserva-
tive in that they locally preserve “divergence” or charge. Employing
mixed polyhedral cells {hexahedral, tetrahedral, etc.), these meth-
ods allow more accurate modeling of non-rectangular structures
and objects because the traditional "stair-stepped” boundary ap-
proximations associated with the orthogonal grid based finite differ-
ence methods can be avoided. Numerical results demonstrating the
accuracy of these new methods are presented. © 1995 Academic
Press, nc.

INTRODUCTION

The solution of physical problems whose behavior is gov-
erned by Maxwell's equations has been of considerable interest
for many years. The propagation of electromagnetic signals
such as microwaves far cammunication or radar pulses for the
detection of aircralt are two examples of such problems. The
conventional approach for numerically solving Maxwell’s
equations in the time domain has been the use of finite difference
methods (FDTD) in conjunction with orthogonal grids {1-5].
it is well known that the use of such methods can produce very
acenrate results (particularty when the domain is rectangalar
or almost rectanguolar). However, many problems involve do-
mains or objects which are sufficiendy irvegular in their shapes
that they cannol be easily approximaled with grids consisting
of orthogonal cells [6].

Qver the past years a nber of approaches have been devel-
oped to treat problems with irregular shapes or boundaries. The
simplest ol these approaches has been Lo use the standard FDTD
algorithm and to replace the curved and irregular boundaries
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with  “‘stair-stepped’”  approximations. This approach  has
worked well in some cases bul can give eather poor approxing-
tions in others, unless very fine discretizatons are used [6f.
Another approach has been to map the original irregular domain
into a rectangular one and then to apply the FDTD method in
the transformed coordinates {7, 8]. This approach suffers from
the facts that more complicated equations must be solved and
appropriate mapping functions are not always easily obtained.
These approaches have been motivated by a desire to retain
the use of the basic orthogonal grid FDTD method. The FDTD
method has a number of attractive numerical properties. It is
charge or divergence preserving both locally and globally. 1t
is second-order accurate and non-dissipative. It is also very
computationally mexpensive.

More recently, other numerical algorithms which allow the
use of unstructured and irregular grids have been studied. Finite
element methods, which have been very successfully used for
solving ellipuic and parabolic partial differential equations, have
been used with Maxwell’s equations |9, 10j. These methods
allow the use of boundary conforming non-orthogonal and un-
structured grids which give one the ability to approximate irreg-
ular boundaries with much greater geometrical accuracy. These
methods usually provide for global charge or divergence conser-
vation but not for local element charge conservation. When
applicd on orthogonal structored prids, these methods do not
reduce o the Familiar FDTD method. In fact, some of the finite
clement methods, when used with orthogonal grids, reduce to
methads which have known difficulties such as grid decoupled
solutions (91,

In a desire to use the FDTD algorithm essentially everywhere
in a problem and still be able to match trregular boundaries,
Taflove [11] has developed an approximation technique that
allows the use of special non-orthogonal cells immediately
adjacent to the irregular boundary. Local conservation of charge
for these special boundary cells is not preserved and second-
order accuracy is not assured in general. The primary advantage
of this approach js that of very Jow computational cost. Long
term stability of the method is also an open question.
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Drawing upon experience in computational fluid dynamics
(CFD), finite volume methods have recently been introduced
to electromagnetics [12], These methods use flux matching
techniques across cell faces to form approximations to Max-
well’s equations. In order to achieve stability, these methods
require the use of time integration methods which are dissipa-
tive. Lax—Wendroff or upwind tume differencing methods have
typically been used. These methods preserve charge or diver-
gence only to the truncation error level. Even though accurate
short time solutions have been demonstrated, there remain accu-
racy questions. The longer term effects of the dissipative time
integration methods and the effects of the lack of exact charge
conservation are questions that remain to be answered. These
methods also do not reduce to the FDTD method when orthogo-
nal grids are used.

Not related to the above-mentioned CFD-based finite volume
methods, but sharing a similar name, modified finite volume
(MFV) methods have been recently presented f13]. These meth-
ods again allow the use of unstructured non-orthogonal bound-
ary confirming grids and reduce to the traditional FDTD method
when used with structured orthogonal grids. These methods are
charge conservative and non-dissipative and can produce very
accurate solutions. Qur first impression of these methods was
that they had all of the desirable numerical approximation prop-
erties (charge conservation, non-dissipative, direct generaliza-
tions of FDTD, etc.}. However, for some problems using highly
distorted grids, weak instabilities and subsequent non-physical
solution growth have been observed.

With a continuing goal of developing algorithms without
significant drawbacks for solving Maxwell’s equations using
unstructured non-orthogonal grids, we seek algorithms which
have the following properties:

1. Allow the use of unsiructured non-orthogonal grids.
2. Allow a variety of cell or element types.

3. Reduce to the FDTD method when orthogonal grids
are used,

Preserve charge or divergence locally {and globally).
Conditionally stable.
Non-dissipative.

A e

Accurate for non-orthogonal grids.

In this paper we will present three new algorithms which
meet the above criteria. These methods are derived using a
discrete surface integration (DSI) technique. One might refer
to these methods as finite velume methods, as they are derived
from an integration technique. However, since they involve
only surface integrations, we prefer the terminology of discrete
surface integration techniques. As formulated, the DSI tech-
niques can be used with essentially arbitrary unstructured grids
composed of convex polyhedral cells. In our implementation
of the DSI algorithms, we allow for the use of unstructured
grids which are composed of combinations of non-orthogonal

FIG. 1. Twisted waveguide discretized into hexahedral cells.

hexahedrons, tetrahedrons, triangular prisms, and pyramids.
These new methods actually reduce to the conventional FDTD
method when applied on a structured orthogonal hexahedral
grid, The DSI techniques are formulated so that local (and,
hence, global) conservation of charge or divergence of the fields
is inherent in the algorithm and easily demonstrated. They use
a leapfrog time integration technique which is conditionally
stable and non-dissipative. This paper extends and improves
our previous unstructured grid MFV algorithms [9, 13]. The
new algorithms have comparable accuracy and overcome the
stability or solution growth difficulties which occurred when
the MFV algorithms were applied on highly distorted grids,

It goes without saying that algorithms based on unstructured
non-orthogonal grids will be significantly more complex and
costly than the orthogonal grid FDTD method. However, since
the DSI methods reduce to the computationally efficient FBTD
method when the grid is orthogonal, we advocate the use of
#rids which are orthogonal almost everywhere so that advantage
may be taken of the simplifications that occur in this case.
Even when non-orthogonality exists, the use of efficient data
structures allow the new DSI algorithms to be quite computa-
tionally efficient.

In the next section, we will describe in detail the new DSI
methods. We will then discuss issues concerning the implemen-
tation of these methods as they relate to efficiency. We will then
describe the numerical experiments that have been perforied to
assess stability. Finally, numerical results will be presented to
demonstrate the accuracy of the DSI methods.

DISCRETE SURFACE INTEGRATION METHODS

We begin by assuming that we wish to solve Maxwell’s curi
equations on an irregular three-dimensional domain R which
has a boundary surface denoted by §. We will also assume that
the domain R has been discretized into convex polyhedrons.
Figure 1 shows a twisted waveguide discretized using hexahe-
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dral cells. This is an example of a problem type that we wish to
consider that could not be easily solved using the conventional
orthogonal grid FDTD method. Maxwell’s curl equations are
given by
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where for linear isotropic materials the vectors D, E, B, and
H are related by the constitutive relationships

D=cE
B = uH.

The linear isotropic material properties are: g, the permittivity,
and u, the permeability. Like the conventional FDTD method,
the DSI methods can be generalized to treat more complex
materials. However, for the purposes of this paper, we will
assume that the linear isotropic material properties are
piecewise constant over the domain R. We will also assume
that S is a perfectly conducting surface, i.e., E,, = 0. This is
sufficient to guarantee that the problem is well posed.

We will derive our new DSI algorithms for unstructured
grids formed from convex polyhedral cells. We restrict the
choice of cell types to convex polyhedrons whose edges are
straight lines. The faces of the polyhedrons are not necessarily
planar and we make the assumption that any face in the assem-
bled grid is shared by at most two cells. These are very weak
restrictions and allow a great deal of flexibility.

The DSI method requires the use of a dual grid. The dual
grid and its structure are completely derivable from aknowledge
of the primary grid. For each cell of the primary grid, we define
its barycenter to be a node of the dual grid. The barycenter of
a cell is located at the average of the coordinates of the nodes
which define the cell. We construct edges of the dual grid
by connecting barycenters of adjacent cells with straight lines
passing through each of the interior cell faces of the primary
grid. The barycenters of two cells will be connected (i.e., form
a dual edge) if and only if the two cells share a common face.
For primary cell faces which lie on the problem boundary, 5, we
form a corresponding dual edge by joining the cell barycenter
to the face barycenter. There is a one-to-one correspondence
between the nodes, edges, faces, and cells of the primary grid
to the cells, faces, edges, and nodes of the dual grid, respec-
tively. The dual face associated with a primary edge has as its
perimeter the duval edges associated with all of the primary
faces which share the given primary edge. The dual cell associ-
ated with a primary node has as its surface the dual faces which
correspond to all of the primary edges which share the primary
node. Although not necessary for the definition of the new
algorithms, we recommend that the variations in grid sizes and

FIG.2. Primary grid consisting of eight hexahedral cells and its one interior
dual cell.

angles be sufficiently smooth so that the primary and dual edges
actually intersect their corresponding dual and primary faces,
respectively. Degradation of solution accuracy has been ob-
served when this condition is not met. Figure 2 shows an eight
cell hexahedral primary grid and its one interior dual cell.
Our DSI solution variables will be associated with the edges
and faces of the primary grid and also with the edges and faces
of the dual grid. The quantity associated with a primary cell
edge is the projection of the electric field vector onto that edge,
i.e., E-s, where s is the primary cell edge vector. The magnetic
field projection H - s* is associated with a dual cell edge, where
s* is the dual cell edge vector. In addition, with each primary
grid face we will associate a full magnetic field vector B,
and with each duat grid face we will associate a full electric
displacement vector D. We will denote with an asterisk, *, the
geometric quantities associated with the dual grid. Figure 3
depicts these associations. We remark that these associations
of field quantities with the primary and dual grid locations
are entirely reciprocal and that the respective locations of the

\
® Ees

and D Locations

FIG. 3. Discrete electric and magnetic field variable locations relative to
the primary and dual grid cells.
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magnetic and electric field quantities could be interchanged.
The particular choice of which field quantities to associate with
each grid is best determined by deciding which field quantities
one desires to have on the exterior boundary surfaces where
the boundary conditions will be imposed. Since we are assum-
ing that our domain R is surrounded by a perfect electric conduc-
tor, we will associate the electric and magnetic field quantities
as described above. For open region problems, the choice for
the location of the field quantities will depend on the particular
radiation boundary condition algorithm used.

We will now describe the equations and algorithmic process
used to advance in time the magnetic field vectors which are
assoctated with each primary grid face. We assume that the
time variable has been discretized by the choice of a timestep
size, Az, Superscripts on field quantities will denote their time
state with D* = D(z*) = D(k Ar). As we will be using a leapfrog
style time integration method, the magnetic field vectors will
be associated with half-integer times, "2, and the electric
field vectors will be associated with integer times, *. For a
particular primary cell face, we define the area-normal vector
to be N = [ n dS, where n is a unit surface normal defined
by the right-hand rule in relation to a specified circulation
around the perimeter of the cell face. It is easily shown that N
is uniquely determined by the perimeter of the surface and is
independent of the actual interior surface shape. This fact allows
for simple computations of N using piecewise planar approxi-
mating surfaces. Using (2) for the primary grid face, F, we
define the time derivative of the normal component of the
magnetic field to be

k k
%-N;EL(%-n)dS— —L(Vx EX.ndS

= 3& E*.dL (3)

Equation (3) allows us to obtain the time derivative of the
normal component of the magnetic field on a primary face, F,
from the electric field projections onto the perimeter edges of
that face. The last integral in (3) is easily computed numerically
by summing these edge projections. This can be done for each
primary cell face.

The next step in the algorithm is to use these time derivatives
of the normal components of the magnetic field to compute a full
vector value of dBY/dr for the primary cell face, F. We will as-
sume that the face F is defined by P primary edges and nodes,
with the ith node being located at the intersection of the consecu-
tive edges i and m = (i mod P) + 1. Also, we assume that the
face F is shared by N, primary grid cells, where by construction:
N. = 1 for boundary faces and N. = 2 for interior faces. We will
denote by £;;, the face of cell j (other than ') which shares edge
i. Figure 4 depicts these associations for a dual edge associated
with a primary face defined by five primary edges. Ateach of the
P nodes of face F, we will unfold N, vector values dBﬁ}/dt by
solving the 3 X 3 system of equations:

> Cell |

> Celt2

FIG. 4. Primary grid faces used to time advance a magnetic field vector.

dB; B .
dB¥;
aBi \

wherei=1,..,P,j=1,..,N,and m = (i mod P} + 1. For
this primary face, F, which is shared by N. primary cells, there
are PN, different values of dBf;/dr, which will now be averaged
or interpolated to form a single dB/dt vector for the face.
There are many reasonable ways to average these vectors and
we will consider the three following averaging or interpelat-
ing methods:
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where the weight

wy = Ng- (N‘FE.,i = NFHL;')

represents the volume of the j* local coordinate system at node
i of face F. We note also that the weight w;; is the determinant
of the system of Egs. (4). A different discretization method
will be obtained for each different averaging method. We char-
acterize (5a) as a simple vector sum average, (5b) as a partially
volume weighted average, and (5¢) as a fully volume weighted
average. As will be subsequently discussed, numerical evidence
indicates a preference for the fully volume weighted averaging
scheme (5¢).

The full B vector for each primary face, F, may now be
advanced in time using the time-centered leapfrog algorithm:

k
Bk+1f2 — Bk*i,’Z + Atddli! (6)

where At is the specified timestep size. Finally, a time advanced
value of the projection of the magnetic field onto the dual
edge, s*, which penetrates the primary cell face, F, is easily
obtained using

Btt12. g%

i3

(H . s*)ki—h’! — , (7)

where p is an appropriate permeability value. If the permeabil-
ity is discontinuous then a value can be determined by an
appropriate average as is done for FDTD algorithms.

It is important to note that the first equation in {4) (namely,
the equation coming from the given face F) is common to all
of the sets of 3 X 3 equations being used in the time advance
process for the face. This implies that the averaged value (5)
of the time derivative of the magnetic field vector for F also
satisfies this equation, It is from this aspect of the numerical
algorithm that divergence or charge conservation can be demon-
strated. If we integrate the divergence of (6) over a primary
cell, C, we obtain

¢
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(8)
dB*
+ At JC (V ?) dv.
. Considering the last integral term in (8) we have
dB* . dB*
fc (V?) dv = Jac ( dr -l'l) ds
9

where the sum runs over all the faces F; of the closed cell C.
The last sum is zero because each edge of C will be traversed
twice, once in each direction. Thus we see that the local diver-
gence of the time derivative of the magnetic field vector is zero
and so if the initial fields have zero local divergence, then (8)
and (9) prove that zero divergence of the time advanced fields
will be conserved.

To time advance the electric field vectors which are associ-
ated with each dual cell face, we proceed in a manner which
is exactly ‘‘dual’’ to the magnetic field procedure described
above, For any dual cell face, we define the dual area-normal
vector to be N* = f n* d5*, where n* is a unit dual surface
normal defined by the right-hand rule in relation to a specified
circulation around the perimeter of the dual cell face. Using
(1) for a given dual grid face F*, we define the time derivative
of the normal component of the electric displacement vector
to be

dDFHe « apkr1e
. = i *
" Nf. L* ( Pyt ) ds
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Again, the last integral in (10) is easily computed by summing
the projections of the magnetic field on the edges defining the
dual cell face. This can be done for each dual cell face.

The next step in the algorithm is to use these time derivatives
of the normal components of the electric field to compute a
full vector value of dD%./dr for the dual cell face, F*. We will
assume that the face F* is defined by P* dual edges and nodes,
with the i dual node being located at the intersection of dual
edges i and m = (i mod P*) + 1. Also, we assume that the
dual face F* is shared by N¥ dual cells. We will denote by
F¥, the dual face of dual cell j (other than F*) which shares
dual edge i. Figure 4 with all quantities replaced by their appro-
priate duals would depict these associations. At each of the P*
dual nodes of dual face F*, we will unfold N¥ vector values
dDE'/dr by solving the 3 X 3 system of equations

dngHlZ
I NE=¢ He".a
dt d F
© dDi
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wherei = 1, .., P* j=1,..,N¥ and m = (i mod P*) + 1.
For this dval face, F'*, which is shared by N} dual cells, there
are P*N¥ different values of dD§/dt, which will now be
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averaged or interpolated to form a single dD%1/dr vector for
the dual face, The averaging methods (5a)—{5¢) used for the
magnetic fields are also used for the electric fields.

The full D vector for the duoal face, £*, may now be advanced
in time using the time-centered leapfrog algorithm,

de+lI2
d

D = D* + Ar (12)

where At is the specified timestep size. Finally, a time advanced
value of the projection of the electric field onto the primary
edge, s, which penetrates the dual cell face, F*, is easily ob-
tained using

piti g
E-g)¢ 12 = i
(E-5) -

(13)

where & is an appropriate permittivity value. The local conserva-
tion of divergence for the electric field can be easily shown in
a manner simiiar to that described above for the magnetic fields.

Equations (3)—(7) for the magnetic field quantities, Eqs.
(10)—(13) for the electric field quantities, and a linear averaging
method (5), constitute the new divergence conserving DSI ap-
proximation methods.

When used with structured grids composed solely of hexahe-
dral cells, the new DSI method differs only slightly from our
previous MFV method. In computing the time advanced value
of an edge-projected magnetic field value, exactly the same
electric field values would be used to compute the required time
derivative. However, slightly different weights or coefficients
would be used in the DST method. For unstructured grids, the
differences between the DSI method and the MFV method
become more pronounced. In general, the DSI method requires
fewer dual edge magnetic field projections to time advance a
given electric field projection than does the MFV method. For
the DSI method, only those dual edges defining the dual faces
which are immediately adjacent to the dual face of the primary
grid edge being updated are used in the update algorithm. In
contrast, the MFV algorithm would use the dual edges of all
of the dual faces (potentially many more) of the two dual cells
which surround the primary grid edge field value that is being
time advanced. Thus we see that the DS] algorithm is in general
more compact than is the MFV algorithm.

We note that significant simplifications occur when a primary
edge is orthogonal to its dual face, or “‘dually,”” when a dual
edge is orthogonal to its primary face. When this occurs, the
vectors s and N (or s* and Ng) are aligned. The time advance
of the edge-projected field value may be performed divectly
using (3) (or (10)) and the averaging (5) may be completely
bypassed. Stated another way, when the above orthogoenality
conditions exist, the time advance of E-s (or H-s*) may be
accomplished using a single line integral around the perimeter
of the face F* (or F). It is this fact that demonstrates that the

DST methods are completely equivalent to the canonical FD'TD
methods when orthogonal hexahedral-based grids are used.
Therefore, the DSI methods are direct generalizations of the
orthogonal grid FDTD methods for unstructured non-orthogo-
nal grids. These orthogonality conditions may occur locally for
only a relatively few edges or they may oceur globally for the
entire grid. They occur globally when structured grids com-
posed of orthogonal hexahedral cells are used. They also occur
globally when grids are used which are three-dimensional ana-
logs of two-dimensional grids formed from Delaunay triangles
and their dual Voronoi polygons. We will indicate in the next
section how a properly structured code can take advantage of
these simplifications when orthogonality occurs.

Exterior (perfect electric conductor) boundary conditions are
very easily handied by simply setting E-s = E,, = 0 for those
edges s of the grid which form the boundary. Therefore, the
above time advance procedure is not required for the electric
field projections for edges which are boundary edges as these
projections are determined completely from the boundary con-
ditions. For primary cell edges which have one endpoint on
the problem boundary surface § and the other in the interior
of R, there will be only one complete dual cell associated with
this edge (rather than two). The second dual cell is incomplete
as it is clipped by the boundary surface S. For computing E-s
for such edges, appropriate values for the line integrals around
the incomplete dual faces can be determined from the boundary
conditions using reflection principles. By choosing primary
grids which are locally orthogonal near the exterior boundary,
the time advance of the edge projection can be performed as
mentioned above without using any of the incomplete boundary
dual faces.

Local grid orthogonality at exterior boundaries also facilitates

, the solution of open region problems (those which are not

enclosed by perfect conductors). We have not as yet developed
three-dimensional radiation boundary conditions which are use-
able with general non-orthogonal grids. However, open region
problems can be solved using the new DSI methods if the
exterior boundary cells are made to be orthogonal. In this case,
the radiation boundary condition methods [14] developed for
the canonical FDTD methods are easily applied. Again, this is
possible because of the equivalency of the DSI metheds and
the canonical FDTD method for orthogonal grids.

As implied in the DSI algorithm description above, interior
material interfaces are also easily handled by using appropri-
ately averaged values for the discontinuous permittivity, g, and
the permeability, g (as is customary with the conventional
orthogonal grid FDTD method).

TMPLEMENTATION OF THE DSI METHOD

In actually implementing the new DSI algorithm, there is
considerable flexibility in choosing the variables to be used as
the actual computational variables. If computer storage were not
a significant consideration, one could keep the edge projected
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values, the face normal components, and the full solution vec-
tors associated with the faces. However, storage is almost al-
ways an issue for large three-dimensional problems and in our
implementation we have chosen to use the projections of the
vector fields onto the primary and dual grid edges. Direct equa-
tions for the time advance of H-s* and E - s are easily derived
by combining and manipulating (3)—(7) and (10)--(13), respec-
tively. For an implementation using edge projected field values
as the variables, the total number of unknown approximate field
quantities is clearly equal to the number of cell edges in the
primary grid plus the number of cell edges in the dual grid.
For a non-orthogonal, but structured, hexahedral grid the time
advance of a typical interior E-s will involve the use of 20
surrounding magnetic field projected values, H-s*. A similar
number of electric field values would be used for the time
advance of a typical magnetic field value. For orthogonal hexa-
hedral grids, this number reduces to four. These significant
potential savings are the basis for our advocating the use of
orthogonal grids wherever possible. These potential savings
have also motivated us to design an implementation of the
algorithm which can benefit from orthogonality when it occurs,

In implementing this new DSI algorithm, we have structured
the code so that there first occurs a preprocessing phase. In
this phase, the dual grid is constructed from the primary grid
information and a dependency graph is constructed for each
primary grid and dual grid variable. A dependency graph is
simply a list of pointers which point to all of the other grid
variables that are required to time advance a specific grid vari-
able. In conjunction with the dependency graph, coefficients
are also generated so that any given variable may be advanced
in time by computing a single very simple dot product of a
coefficient vector with a vector of appropriate variables deter-
mined from the dependency graph. In forming the dependency
graph, checks for orthogonality are performed and variables
that are not needed for the time advance due to reasons of
orthogonality are never used or stored in the dependency graph.
This allows us to take advantage of the greater efficiencies
{both in storage and computational arithmetic) inherent in the
algorithm when grid orthogonality exists, either locally or glob-
ally. Following the preprocessing phase is the execution phase
where the dependency graph, coefficients, and simple dot prod-
ucts are repeatedly used to time advance all of the problem vari-
ables.

We have recently been solving some rather large problems
using the DSI method on unstructured grids. One particular
problem involved an unstructured grid consisting of 262,620
cells, resulting in 1,645,195 degrees of freedom, and required
only about 17,493,000 words of memory to execute on a
Cray-2. No memory saving techniques such as word packing
were used. The computational time required for this problem
was about 7 s per timestep per degree of freedom. The amount
of memory and computational time required for a problem can
vary significantly, depending upon the structore and orthogonal-
ity present in the problem grid.

FIG. 5. Highly distorted grid obtained by mapping a 20 X 20 square grid
to a circle.

STABILITY EXPERIMENTS

We have presented a description of three new DSI algorithms
for solving Maxwell's equations. Each algorithm is distin-
guished by a different averaging method used to form the time
derivative of a vector field associated with a cell face. As
these methods reduce to be the canonical FDTD method on
orthogonal grids, their stability properties (when used with this
type of grid) are the same as for the FDTD methods. As we
have been unable to mathematically analyze their stability prop-
erties for non-orthogonal unstructured grids, we have performed
computational experiments to study this issue. While we recog-
nize that these experiments do not conclusively demonstrate
stability, we feel that they are useful to give general indications
of stability characteristics.

For testing stability on highly distorted grids, we have found
that a grid obtained from mapping a 10 X 10 X 10 cubical
grid to a sphere provides a good test. The corner cells of the
cubical grid become very highly distorted under the mapping.
For two-dimensional testing, a square grid mapped to a circle
provides a good test. Figure 5 shows a 20 X 20 two-dimensional
square grid mapped to a circle and it indicates the degree of
distortion that occurs in the corner cells. These problems can
be randomly excited and the solution can be monitored for
many thousands of time steps to see if growth occurs in the
solution. We judge the stability of an algorithm by measuring
the solution growth over time in terms of total energy or maxi-
mum solution magnitude.

We have experimented with the three different DST averaging
methods: (3a), a stmple vector sum average of all of the time
derivative vectors on both sides of the given face; (5b), a vector
sum average of the two volume-weighted averages of time deriv-
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FIG.6. Long-term solution growth plot for the weakly unstable MFV algo-
rithm.

ative vectors on either side of the given face; and (5¢), a full
volume-weighted average of all of the time derivative vectors on
both sides of the given face. Numerical experiments involving
the use of 50,000 timesteps have indicated that all of the three
DSI methods are conditionally stable. However, they differ in
that they seem to have different stability limits. For the highly
distorted spherical grid mentioned above, we have observed dif-
ferences in the maximum allowable timestep sizes by factors as
large as 5. The simple vector sumn average method, (5a), always
required the smallest timestep size and the full volume-weighted
averaging method, (5c), altowed the largest timestep size. The
mixed vector sum and volume weighted average method, (5b),
always fell between the other two methods. For these stability
reasons we advocate the use of the full volume weighting averag-
ing method (5¢). In contrast, our previous MFV method [13] is
simply unstable for these highly distorted grids. In performing
stability experiments with various algorithms, we have observed
that it is essential to use a large simulation time (involving many
timesteps) so as to allow enough time for signals to transit the
computational domain many times. For some distorted grids, our
previous MFV method would exhibit no discernible solution
growth until many thousands of timesteps had occurred. Figure
6 shows an example of an MFV solved waveguide problem that
showed no apparent solution growth until some 20,000 timesteps
had been taken. In Fig. 6, the electric field at every tenth timestep
for a single point is plotted versus the timestep number. For this
same problem, the DSI algorithm does not show any spurious
solution growth even to 50,000 timesteps. To determine an ap-
propriate timestep size in solving a particular unstructured grid
problem, we compute the smallest primary or dual grid edge
length and divide by the local propagation velocity. We then use
a timestep size which is half of this computed value. In general,
this has been a reliable approach.

ACCURACY EXPERIMENTS

We feel it is important to demonstrate the accuracy of new
algorithms by comparing their numerical solutions for problems

which have known and computable analytic selutions. We have
extensively compared the new DSI method with our previous
MFV method [13]. For problems using hexahedral grids, where
the MFV method does not encounter stability related solution
growth, we have found that the two methods produce solutions
which are almost indistinguishable. Therefore, in the results
which follow, we will present results only for the full volume
weighted averaging DSI method.

We first consider a simple problem which is designed to
provide some assessment of the wave propagation characteris-
tics of the new algorithm. We consider the propagation of a
TE; signal in a rectangular waveguide which 1s | m in width,
0.3 m in height, and 10.0 m in length. The signal is initiated
in the waveguide by specifying the tangential field, E,, at the
left boundary { y = 0.0). The function used to drive this signal is

E[(t, x,0,2) = sin(1.5 #71) sin(m x). (14)
We assume that all of the waveguide walls are perfect electric
conductors; i.e., B, = 0. Normalized values for the material
parameters £ and g are used: £ = 1.0 and g = 1.0. The signal
is allowed to propagate until r = 8. The analytic solution for this
problem has been derived and computed so we may examine the
errors precisely.

We have used a variety of grids to numerically solve this
problem. Clearly one simple grid for this problem is an orthogo-
nal hexahedral grid. However, to demonstrate the ability to use
non-orthogonal grids, we deliberately skew the 10 X 100 X 3
grid so that it is composed of non-orthogonal hexahedrons as
shown in Fig, 7. The skewing for this grid is such that halfway
down the length of the guide the cells have angles of about
57° and 123° Figure 8 compares the time histories of the
numerical solutions for the skewed and orthogonal hexahedral
grids, respectively, with the analytic solution for a point in the
center of the waveguide and 4.0 m down the guide. We note
that the significant error occurs as the signal first reaches the
observation point. Both solutions exhibit typical dispersion er-
rors; however, the skewed grid results are somewhat better. To
more precisely compare the solutions, Fig. 9 shows the maxi-
mum errors over the entire waveguide for both the skewed and

FIG.7. Skewed 10 X 3 X 100 non-orthogonal hexahedral waveguide grid.
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FIG. 8. Numerical TE,, waveguide solutions compared with the analytic
solution for a point 4.0 m down the guide: (a) analytic solution; (b) orthogonal
grid DSI solution; (c) skewed grid DSI solution.

orthogonal hexahedral grid solutions as a function of time.
These maximum errors should be referenced to the solution
magnitude which oscillates roughly between +1 and —1. Sur-
prisingly, for all but the earliest times, the skewed grid produces
a uniformly better solution. To demonstrate that other grid cell
types can produce acceptable solutions Table I compares the
maximum errors, run times in seconds for an IBM RISC 6000
Model 550 computer, and problem sizes for several different
grids. The grids differ in the number of cells and edges. The
non-hexahedral grids were all formed from the orthogonal and
skewed hexahedral grids by subdividing each hexahedral cell
into five tetrahedrons, six pyramids, two tetrahedrons, and
two pyramids, or two triangular prisms, The subdivision of a
single hexahedral cell into five tetrahedrons and the subdivi-
sion into two tetrahedrons and two pyramids is shown in
Figs. 10-11.

From Table 1 one can see that the most accurate results were
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FIG. 9. Comparison of maximum errors as a function of time for the DSI
orthogonal and skewed waveguide hexahedral grids.

obtained using the tetrahedral grid derived from the skewed
hexahedral grid. However, these results required a great deal
more computer time to obtain. The worst results resulted from
the use of the skewed grid consisting of tetrahedral and pyrami-
dal cells. The poorer results reflect the fact the grid is com-
posed of highly distorted cells which have very large and very
small internal angles. It seems apparent that this problem is
most efficently solved using grids consisting of hexahedral
cells.

To demonstrate the accuracy that can be gained by the better
zoning of non-orthogonal surfaces than can be achieved using
only orthogonal cells, we consider the problem of the scattering
of a plane wave guassian pulse from a perfectly conducting
sphere of radius 0.1 m. The plane-wave pulse is defined by the
Gaussian-like function

f
exp(—10[10% — 11%) — exp(—10)
= 1 — exp(—10) ’

0, otherwise.

if0=¢r=2x10",

This problem again has a computable analytic solution so we
may compare errors precisely. Figure 12 shows the DSI surface
grid and a stair-stepped orthogonal grid approximation for the
surface of a sphere of radius 0.1 m, Both surface grids are
derived from a 6 X 6 X 6 cubical grid. The DSI surface grid
is obtained by mapping the surface of the discretized cube to
a (.1-m radius sphere. The stair-stepped orthogonal grid is
obtained by eliminating cells from the cubical grid. Figure 13
compares the orthogonal grid finite difference scattered field
solution and the DSI scattered field solution with the analytic
solution for a point which lies in the shadow region (behind
the sphere relative to the direction of the incident pulse) two
sphere radii away from the sphere surface. The maximum errors
are noticeably different. Significantly more accurate results are
obtained by avoiding the orthogonal *‘stair-stepped’’ grids. It
is also noteworthy that the DSI results were obtained using a
2.2-m diameter hemispherical domain which was discretized
using only 9600 radially expanding cells. In contrast, the finite
difference solution used half of a 2.0-m cubical domain with
a 60 X 60 X 30 uniform cubical discretization (108,000
cells).

Another problem thar has a known analytic solution is that
of a pulsed dipole radiating in free space. We assume that a
dipole is located at the origin and is oriented in the z-direction.
We will drive it for a finite amount of time with the pulsed
amplitude function f(r) = g{a(#)), where a{f) = 4 X 10" — 1
and where

if—1=x=1,

o — 1)
g(x)={x

0, otherwise.

As the solution of this problem depends strongly on this functicn
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TABLE 1

Comparison of TE,; Wavegnide Solution Maximum Errors, Run Times, and Problem Sizes for Various DSI Grids

Grid type Max error Steps Time Nodes Edges Faces Cells

Hexahedral Orth 182 160 6.7 4444 11773 10330 3000
Skew A12 184 8.2

Tetrahedral Orth 155 370 20.6 4444 22103 32660 15000
Skew D69 441 67.8

Pyramid Orth 188 800 85.2 7444 35773 46330 18000
Skew 158 919 206.3

Tet—pyr Orth 481 462 728 4444 22130 29660 12000
Skew 376 552 89.8

Tri—prism Orth 212 339 204 4444 14893 16360 6000
Skew 101 362 355

FIG, 12. Surface discretizations of a 0.1 m radius perfectly conducting
sphere: {a) boundary cenforming DDSI surface grid {left); (b) stair-stepped
ortihogonal FDTD grid (right).

FIG. 1. Hexahedral cell subdivided inte five teirashedrons,
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FIG. 14. Mostly orthogonal DSE grid for the dipole problem with a non-
orthogonal region transitioning from a sphertcal surface.

and its first two derivatives, we have chosen the function to
have smooth second derivatives. The analytic solution may be
found in almost any standard text or in [13]. To solve this
problem, we use a grid that is mostly orthogonal, but in the
corner nearest the origin we use a small volume of non-orthogo-
nal cells which transition from a spherical surface to the cubical
grid. Figure 14 shows the grid used. We excite the problem by
specitying the tangential components of the analytic soltion
on the spherical boundary surface and compare the numerical
solution with the analytic solution at a point just outside of the
non-orthogonal region. Figure 15 compares the E, component
of the DSI solution with the analytic solution for a peint located

.
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FIG. 15. Comparison of the E, component of the DS and analytic dipote
solutions for a point just outside the non-orthogonal grid region.
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FIG. 16. Comparison of the electric field time histories for the twisted
waveguide D31 numerical TE,, sclution with a non-twisted waveguide DSI
numerical solution at a point in the center of the guide immediately beyond
the twisted portion.

slightly outside of the non-orthogonal cell region. We see that
excellent results are obtained. The other solution components
exhibit comparable accuracy.

As a final example we consider the problem of computing
a TE, waveguide solution for the rectangular waveguide
(shown in Fig. 1) which goes through a 180° twist. This problem
cannot be effectively solved using a stair-stepped orthogonal
grid finite difference algorithm unless a tremendously large
number of cells are used. The analytic solution for this problem
is not known. However, from actual waveguide experiments,
we know that a TE|y mode should propagate and be rotated
180° with little distortion by such a waveguide. Figure 1 shows
the 10 X 100 X 3 cell DSI grid used and Fig. 16 compares
the DSI solution time history for a point in the center of the
waveguide immediately after the twist with a TE}; solution for
a similarly discretized waveguide with no twist. We note that
the waves transition the twist with little distortion. Conversion
of the TE,, mode to other modes does not occur because of the
thinness of the waveguide. This problem was excited using the
driving function (14).

CONCLUSIONS

The numerical results presented here lead us to believe that
the 381 method presented in this paper is one with significant
advantages. First, it is a direct generalization for unstructured
non-orthogonal grids of the well-known and widely used or-
thogonal grid FDTD method for Maxwell’s curl equations, so
its approximation properties on regular orthogonal grids are
quite well understood. Second, the DSI method is conditionally
stable even for highly distorted grids. This is a distinct improve-
ment when compared with our previous MFV algorithm. Third,
the DS method is conservative in that it conserves the diver-
gence of the fields both locally and globally. Fourth, it is quite
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accurate (comparing well with our previous MFV algorithm),
even when used with irregularly structured grids. Fifth, it is
very flexible and can be used with various combinations of
different polyhedral discretizations.

The most significant disadvantage of the DSI method is the
larger amount of information (primary grid structure plus dual
grid structure) that is required. This disadvantage can largely
be overcome by using discrete grids which are primarily com-
posed of orthogonal hexahedral cells, together with a relatively
few number of irregularly shaped non-orthogonal cells which
are used to match boundaries more accurately. Implementing
the algorithm in a two-phase way, where all of the geometry
information is processed first and condensed into a dependency
graph and related coefficients, allows one to take advantage of
grid orthogonality when it occurs and also mitigates the extra
non-orthogonal grid costs.
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